Synthesis of Gold(I) and Gold(II) Complexes with Diphenyl(trimethylsilylmethyl)phosphane

Manuel Bardajia, Peter G. Jonesb, and Antonio Laguna*a

Departamento de Quimica Inorganica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza-CSICa, E-50009 Zaragoza, Spain

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig^b, Postfach 3329, D-38023 Braunschweig, Germany

Received February 16, 1998

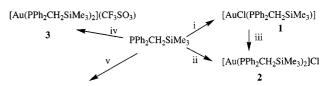
Keywords: Gold(I) / Gold(II) / Diphenyl(trimethylsilylmethyl)phosphane / Ligand effects

The reaction of diphenyl(trimethylsilylmethyl)phosphane with [AuCl(tht)] affords the gold(I) complexes [AuCl(PPh₂-CH₂SiMe₃)] (1) or [Au(PPh₂CH₂SiMe₃)₂]Cl (2). An X-ray study of 1 does not reveal any Au···Au interaction. Treatment of [Au(tht)₂](CF₃SO₃) or [Au(tht)(PPh₃)](CF₃SO₃) with diphenyl(trimethylsilylmethyl)phosphane results in the displacement of the thioether ligands to give the ionic complexes [Au(PPh₂CH₂SiMe₃)₂](CF₃SO₃) (3) or [Au(PPh₂-CH₂SiMe₃)₂](CF₃SO₃) (3)

CH₂SiMe₃)(PPh₃)](CF₃SO₃) (4), the latter mixed with the symmetrical derivatives $[Au(PPh_2R)_2](CF_3SO_3)$ (R = Ph, CH₂-SiMe₃). The molecular structure of complex 3 has been established by X-ray diffraction and shows an antiperiplanar arrangement of the two PR₂R' rotors in the solid state. The reaction of the phosphane ligand with $[Au_2\{\mu-(CH_2)_2-PPh_2\}_2(tht)_2](ClO_4)_2$ affords the dinuclear gold(II) complex $[Au_2\{\mu-(CH_2)_2-PPh_2\}_2(PPh_2\}_2(PPh_2CH_2SiMe_3)_2](ClO_4)_2$ (5).

Introduction

The supramolecular aggregates of gold(I) complexes of type L-Au-X (X=halide or pseudohalide) include dimers, trimers, higher oligomers, and polymers. The degree of oligomerization is determined by several factors, the steric requirement of the ligands being the most clear. [1][2][3]

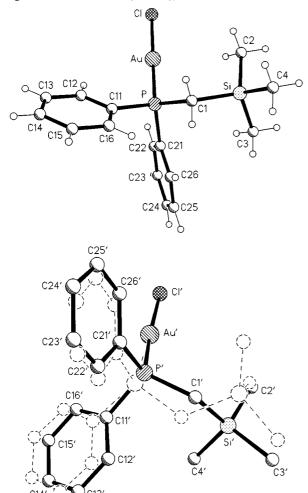

Gold(I) complexes with silanes attracted particular attention after it was found that auration reactions of silanes or silylated alkylgold complexes afford gold(I) clusters with hypercoordinated carbon or nitrogen centers. [4][5][6][7] Gold complexes containing a silicon unit via a bridging O, S, Se, Te, or As donor atom are also known. [8][9][10][11][12] In contrast, no gold complexes with (silylmethyl)phosphanes have been described so far.

In this paper we describe the synthesis of gold(I) and gold(II) complexes with diphenyl(trimethylsilylmethyl)-phosphane. The crystal structures of [AuCl(PPh₂CH₂-SiMe₃)] and [Au(PPh₂CH₂SiMe₃)₂](CF₃SO₃) have been solved by X-ray diffraction studies.

Results

The reaction of diphenyl(trimethylsilylmethyl)phosphane with [AuCl(tht)] (tht = tetrahydrothiophene), in molar ratio 1:1, proceeds by displacing the tht ligand to give complex 1, which by reaction with another PPh₂CH₂SiMe₃ affords complex 2 (see Scheme 1). The latter can be also synthesised by reaction of PPh₂CH₂SiMe₃ and [AuCl(tht)] (molar ratio 2:1). Treatment of [Au(tht)₂](CF₃SO₃) with PPh₂CH₂SiMe₃ in a 1:2 molar ratio gives complex 3, containing two phosphane ligands. Treatment of this phosphane with [Au(tht)(PPh₃)](CF₃SO₃) or [Au(thf)(PPh₃)](CF₃SO₃) (thf = tetrahydrofuran) leads to a mixture of 4 and the correspond-

ing symmetric complexes, 3 and $[Au(PPh_3)_2](CF_3SO_3)$, as shown in the ${}^{31}P\{{}^{1}H\}$ -NMR spectra (Scheme 1).

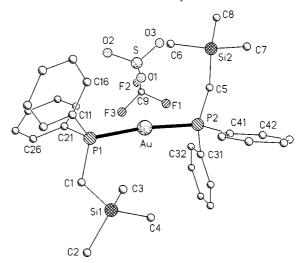

$$\begin{split} & [Au(PPh_3)_2](CF_3SO_3) \ + \ [Au(PPh_2CH_2SiMe_3)_2](CF_3SO_3) \ + \\ & [Au(PPh_2CH_2SiMe_3)(PPh_3)](CF_3SO_3) \ \ \mathbf{4} \end{split}$$

These complexes are air- and moisture-stable white solids at room temperature. They were readily characterised by ¹H and ³¹P{¹H} NMR. Their ³¹P{¹H}-NMR spectra show a singlet at $\delta = 21.6$ (1), 27.6 (2), and 36.4 (3); an AB spin system is observed for 4 ($\delta_A = 46.7$, $\delta_B = 36.5$, ${}^2J_{AB} =$ 331 Hz), besides two singlets corresponding to symmetric phosphane complexes. In the ¹H-NMR spectra the resonance of the CH₂ is observed at $\delta \approx 2$: a doublet for 1-2 $[^{2}J_{HP} = 15.3 (1) \text{ and } 14.3 (2) \text{ Hz}], \text{ a pseudotriplet for 3 (part)}$ A of an $A_2XX'A'_2$ system, N = 5.9 Hz) and a doublet of doublets for 4 ($^2J_{HP} = 13.7$ Hz and $^4J_{HP} = 3.5$ Hz). Their IR spectra show absorptions at 338 (1, medium) and 331 (2, very weak) cm⁻¹ due to $v(Au-Cl)^{[13]}$ and to 1264 (br., s) and 636 (m) from triflate^[14] (3). The LSI-MS mass spectra show peaks at m/z (complex, abundance in%) 469 (1, 55), 741 (2, 100), 741 (3, 100), and 731 (4, 85) corresponding to $[M - X]^+$ (X = Cl or CF₃SO₃).

The crystal structures of 1 and 3 have been determined by means of X-ray diffraction studies. Complex 1 crystallises

with two independent molecules (Figure 1), of which one is disordered over two positions for all atoms except Au and Cl; a suitably restrained refinement proved successful, but the molecular dimensions of the disordered molecule should be interpreted with caution. Here we discuss only the ordered molecule. The gold(I) center displays an almost linear coordination with Cl-Au-P 176.86(6)°. The Au-P distance is 2.236(2) A, similar to that found in other chlorophosphanegold(I) complexes, 2.235(3) A in [AuCl-(PPh₃)],^[15] 2.236(6) A in [AuCl(PPhMe₂)],^[16] 2.232(9) A in [AuCl(PEt₃)],^[17] but somewhat longer than [AuCl(PPh₂CH₂CONHMe)] [2.221(1) A]. The Au-Cl distance is 2.292(2) A, similar to that found in [AuCl(PEt₃)] [2.305(8) A], longer than in [AuCl(PPh₂CH₂CONHMe)] [2.275(2) A] or in [AuCl(PPh₃)] [2.279(3) A]₃ and marginally shorter than in [AuCl(PPhMe₂)] [2.316(6) A].

Figure 1. The two independent molecules of compound 1 in the crystal: (a) the ordered molecule; (b) the disordered molecule showing both alternative sites (see text); H atoms omitted for clarity



There are no short gold-gold contacts, the shortest Au-Au distance being 6.6 A. This long distance can be rationalised in terms of the steric bulk of the ligand, but it contrasts with other cases, as the 2.881 (1) A found in $[Au(PPhMe_2)_2][Au(GeCl_3)_2]^{[3]}$, ca.-3.1 A in $[AuX(PPhMe_2)][X = Cl, 3.091(2)$ and 3.230(2) A; Br, 3.119(2) A; and I

3.104(2) A] or even the 5.916(1) A found in [Au-Cl(AsPh₃)]^[19]. There are no other contacts that could compete with gold—gold interactions, such as the Au···Cl found in $[Au\{P(o\text{-Tol})_3\}(GeCl_3)]^{[3]}$ or the hydrogen bonds in $[AuCl(PPh_2CH_2CONHMe)]$.

The crystal structure of cation of **3** is shown in Figure 2. The geometry around the gold atom is distorted linear, $P(1)-Au-P(2)=172.12(4)^{\circ}$. The Au-P bond lengths are 2.3080(10) and 2.3149(10) A, similar to that found in other $[Au(PR_2R')_2]^+$ complexes, 2.309(3) in $[Au(PPh_2Me)_2][3,4-S_2C_6H_3CH_3)_2]^{[20]}$, and 2.316(4) A in $[Au(PPh_2Me)_2]PF_6$, [21] but longer than in $[AuCl(PPh_2CH_2CONHMe)]$ [2.221(1) A]^[18] and in **1** [2.236(2) A] probably as a consequence of the lesser *trans* influence of Cl. The PR_2R' ligands adopt an approximately antiperiplanar arrangement, with the torsion angle $C1-P1\cdots P2-C5$ 166°.

Figure 2. The cation of compound **3** in the crystal; H atoms omitted for clarity

As in the similar complexes $[Au(PPh_2Me)_2]^+, [^{20}]^{[21]}^{[22]}$ there are no short gold-gold contacts, the shortest Au-Au distance being 9.1 A.

The presence of a pseudotriplet (which can be attributed to two superposed doublets) in the ¹H-NMR spectrum instead of the expected doublet could indicate a case of propeller isomerism. Schmidbaur and coworkers^[23] reported recently that ortho-substituted triarylphosphanes can induce this kind of isomerism in complexes with a coordination number of two, even at room temperature, by hindered rotation of the aryl groups about the P-C_{ipso} axes. The variable-temperature ¹H-NMR spectrum of 3 shows a triplet for the CH₂ resonance and the ³¹P{¹H} spectrum a singlet from -60 to +20°C in CDCl₃ solution; when a ${}^{1}H\{{}^{31}P\}$ -NMR experiment is carried out at -60 °C only one singlet (rather than two) is found, which confirms that there is no propeller isomerism but only two magnetically inequivalent CH₂ units (as the parts A of an A₂XX'A'₂ spin system).

We have also prepared gold(II) complexes by displacement of tht from $[Au_2\{\mu-(CH_2)_2PPh_2\}_2(tht)_2](ClO_4)_2$ [see Eq. (1)]. Complex 5 is a green solid, air- and moisture-stable

at room temperature. We were unable to obtain single crystals of 5 but expect its structure to be similar to that of $[Au_2(CH_2PPh_2CH_2)(PPh_3)_2](ClO_4)_2^{[24]}. \ \ The \ \ IR \ \ spectrum$ shows absorptions at 1092 (br., s) and 623 (m) cm⁻¹ from the perchlorate anion^[25] and at 568 (m) from v(Au-C_{vlide})^[26]. The ³¹P{¹H}-NMR spectrum shows two triplets at $\delta = 46.7$ and 23.6 (${}^3J_{\rm PP} = 38.8$ Hz) as expected for an A₂X₂ spin system. In the ¹H-NMR spectra the resonance of the CH_2 -Si unit appears as a pseudotriplet (N = 5.4Hz) at $\delta = 1.98$ whilst a doublet at $\delta = 1.61$ ($^2J_{HP} = 11.5$ Hz) is observed for CH₂-Au; again when a ¹H{³¹P}-NMR experiment is carried out only a singlet is found for the CH₂-Si unit. The LSI-MS mass spectrum show peaks at m/z (abundance in%) 1463 (25) from [M - ClO₄]⁺ whilst the base peak appears at 741, corresponding to $[Au(PPh_2CH_2SiMe_3)_2]^+$.

$$\begin{split} [Au_2\{\mu\text{-}(CH_2)_2PPh_2\}_2(tht)_2](ClO_4)_2 &+ 2\ PPh_2CH_2SiMe_3 \rightarrow \\ [Au_2\{\mu\text{-}(CH_2)_2PPh_2\}_2(PPh_2CH_2SiMe_3)_2](ClO_4)_2 &+ 2\ tht \end{split} \tag{1}$$

We thank the *Direccion General de Investigacion Cientifica y Tecnica* (Project PB94-0079) and the *Fonds der Chemischen Industrie* for financial support.

Experimental Section

General: All the reactions were carried out under argon at room temperature. $[Au(tht)_2](CF_3SO_3)$, $[Au(tht)(PPh_3)](CF_3SO_3)$ and [Au(thf)(PPh₃)](CF₃SO₃) were prepared in situ by reaction of [AuCl(tht)] or $[AuCl(PPh_3)]$ with $[Ag(CF_3SO_3)(tht)]$ [Ag(CF₃SO₃)] according to a standard procedure: [AuCl(tht)]^[27], $PPh_{2}CH_{2}SiMe_{3}^{[28]}, \quad and \quad [Au_{2}\{\mu\text{-}(CH_{2})_{2}PPh_{2}\}_{2}(tht)_{2}](ClO_{4})_{2}^{[24]}$ were prepared according to literature procedures. - IR spectra were recorded on a Perkin-Elmer 883 spectrophotometer, over the range 4000-200 cm⁻¹, by using Nujol mulls between polyethylene sheets. - 1H- and 31P-NMR spectra were recorded with a Bruker ARX:300 or GEMINI 2000 apparatus in CDCl₃ solutions; chemical shifts are quoted relative to SiMe₄ (external, ¹H) and H₃PO₄ (external, ³¹P). - C, H, and N analyses were performed with a Perkin-Elmer 2400 microanalyser. - Melting points were measured with a Büchi apparatus and are uncorrected. - Mass spectra were recorded with a VG Autospec using LSI-MS+ techniques (with Cs gun) and 3-nitrobenzyl alcohol as matrix.

Caution: Perchlorate salts or derivatives must be manipulated with caution, mainly by avoiding evaporation to dryness.

[AuCl(PPh₂CH₂SiMe₃)] (1): To a dichloromethane solution (15 ml) of [AuCl(tht)] (96 mg, 0.3 mmol) was added PPh₂CH₂SiMe₃ (82 mg, 0.3 mmol). After stirring for 3 h, the solution was concentrated to ca. 2 ml and hexane (15 ml) was added to obtain 1 as a white solid. 1 was washed with hexane (2 × 5 ml). Yield: 70%, m.p. 118°C. - ¹H NMR: δ = 7.7–7.4 (m, 10 H, Ph), 1.83 (d, 2 H, $^2J_{\rm HP}$ = 15.3 Hz, CH₂–P), 0.08 (s, 9 H, Me). - C₁₆H₂₁AuClPSi (504.82): calcd. C 38.05, H 4.2; found C 37.75, H 3.85.

[Au(PPh₂CH₂SiMe₃)₂]Cl (2): This product can be synthesised by two different routes: a) To a solution of [AuCl(tht)] (0.064 g, 0.2 mmol) in dichloromethane (10 ml) was added PPh₂CH₂SiMe₃ (109 mg, 0.4 mmol). After stirring for 1 h, the solution was concentrated to ca. 2 ml and hexane (15 ml) was added. 2 appeared as a white

solid which was washed with hexane (2 \times 5 ml). Yield: 70%. b) To a dichloromethane solution (15 ml) of **1** (50 mg, 0.1 mmol) was added PPh₂CH₂SiMe₃ (27 mg, 0.1 mmol). After stirring for 1 h, the solution was concentrated to ca. 2 ml and hexane (15 ml) was added. **2** appeared as a white solid which was washed with hexane (2 \times 5 ml). Yield: 80%, m.p. 125°C. - ¹H NMR: δ = 7.8–7.3 (m, 10 H, Ph), 2.00 (d, 2 H, $^2J_{HP}$ = 14.3 Hz, CH₂–P), -0.03 (s, 9 H, Me). - C₃₂H₄₂AuClP₂Si₂ (777.22) : calcd. C 49.45, H 5.45; found C 49.25, H 5.55.

[*Au*(*PPh*₂*CH*₂*SiMe*₃)₂](*CF*₃*SO*₃) (3): To a dichloromethane solution (20 ml) of [Au(tht)₂](CF₃*SO*₃) (0.15 mmol, prepared "in situ") was added PPh₂CH₂SiMe₃ (82 mg, 0.3 mmol). After stirring for 2 h, the solution was concentrated to ca. 2 ml and diethyl ether (15 ml) was added to obtain 3 as a white solid. 3 was washed with diethyl ether. Yield: 70%, m.p. 136°C. – ¹H NMR: δ = 7.7–7.5 (m, 10 H, Ph), 2.08 (t, 2 H, $^2J_{HP}$ = 5.9 Hz, CH₂–P), –0.02 (s, 9 H, Me). – ¹H NMR (–60°C): δ = 7.7–7.5 (m, 10 H, Ph), 2.01 (t, 2 H, $^2J_{HP}$ = 5.7 Hz, CH₂–P), –0.01 (s, 9 H, Me). – 31 P{¹H} NMR (–60°C): δ = 35.8 (s). – 11 H{³¹P} NMR (–60°C): δ = 7.8–7.5 (m, 10 H, Ph), 2.01 (s, 2 H, CH₂–P), –0.02 (s, 9 H, Me). – C₃₃H₄₂AuF₃O₃P₂SSi₂ (890.84) : calcd. C 44.5, H 4.75, S 3.6; found C 44.4, H 4.65, S 3.8.

[Au(PPh₂CH₂SiMe₃)(PPh₃)](CF₃SO₃) (4): This complex, mixed with the corresponding symmetric [Au(PPh₂R)₂](CF₃SO₃) (R = Ph, CH₂SiMe₃), was prepared by two different ways. a) To a dichloromethane solution (20 ml) of [Au(tht)(PPh₃)](CF₃SO₃) (0.15 mmol, prepared "in situ") was added PPh₂CH₂SiMe₃ (41 mg, 0.15 mmol). After stirring for 2 h, the solution was concentrated to ca. 2 ml and diethyl ether (15 ml) was added. The white solid was washed with diethyl ether. b) As for a) but using [Au(thf)(PPh₃)](CF₃SO₃), prepared in situ in thf.

[$Au_2\{\mu\text{-}(CH_2)_2PPh_2\}_2(PPh_2CH_2SiMe_3)_2\}(ClO_4)_2$ (5): To a dichloromethane solution (10 ml) of [$Au_2\{\mu\text{-}(CH_2)_2PPh_2\}_2$ -(tht)₂](ClO₄)₂ (60 mg, 0.05 mmol) was added PPh₂CH₂SiMe₃ (27 mg, 0.1 mmol). After stirring for 2 h, the solution was concentrated to ca. 1 ml and diethyl ether (15 ml) was added to obtain 5 as a green solid. 5 was washed with diethyl ether. Yield: 85%, m.p. 120° C (decomp.). - 1 H NMR: δ = 7.5–7.0 (m, 40 H, Ph), 1.98 (t, 4 H, $^2J_{HP}$ = 5.4 Hz, P-CH₂-Si), 1.61 (d, 8 H, $^2J_{HP}$ = 11.5 Hz, Au-CH₂-P), -0.20 (s, 18 H, Me). - 1 H $\{^{31}$ P $\}$ NMR: δ = 7.5–7.0 (m, 40 H, Ph), 1.95 (s, 4 H, P-CH₂-Si), 1.60 (s, 8 H, Au-CH₂-P), -0.20 (s, 18 H, Me). - C_{60} H₇₀ Au_2 Cl₂O₈P₄Si₂ (1564.11): calcd. C 46.05, H 4.5; found C 45.75, H 4.15.

Crystal Structure Determinations: Crystal data and refinement details are given in Table 1. Crystals of 1 were obtained by slow evaporation of a dichloromethane/ethanol slution; crystals of 3 were obtained by slow diffusion at -18°C of diethyl ether into a dichloromethane solution. - Data collection: Crystals were mounted in inert oil and transferred to the cold gas stream of a Siemens P4 diffractometer. Intensity measurements were performed using Mo- K_{α} radiation. Absorption corrections were based on ψ scans. - Structure solution and refinement: Solution by the heavyatom method, anisotropic refinement on F² (program SHELXL-93, G.M. Sheldrick, University of Göttingen). H atoms with riding model or as rigid methyl groups. - Special features: For 1, the second independent molecule is disordered, all atoms except Au and Cl occupying two alternative orientations. Nevertheless, the use of appropriate similarity restraints enabled a satisfactorily stable refinement to be performed. Disordered C and Si atoms were refined isotropically. - Full details of the crystal structures (except structure factors) have been deposited at the Cambridge Crystallo-

Table 1. Details of data collection and structure refinement for complexes 1 and 3

Compound	1	3
Chemical Formula	C ₁₆ H ₂₁ AuClPSi	C ₃₃ H ₄₂ AuF ₃ O ₃ P ₂ SSi ₂
Crystal habit	colourless prism	colourless tablet
Crystal size [mm]	$0.55 \times 0.20 \times 0.10$	$0.60 \times 0.30 \times 0.15$
Crystal system	triclinic	monoclinic
Space group	P(-1)	$P2_{1}/c$
a [A]	9.9920(12)	11.378(2)
b [A]	10.746(2)	18.880(2)
c [A]	17.707(3)	17.993(2)
α [°]	94.99(2)	90
β [°]	104.97(2)	99.43(1)
γ[ο]	94.34(2)	90
$V[A^3]$	1820.4(5)	3813.2(9)
$Z^{[a]}$	4	4
$D_{\rm c} [{\rm Mg \ m^{-3}}]$	1.842	1.552
M F(000)	504.80	890.81
F(000)	968	1776
T [°C]	-100	-100
2θ _{max} [°]	50	50
$\mu(\text{Mo-}K_{\alpha})$ [mm ⁻¹]	8.37	4.11
Transmissions	0.49-1.00	0.63-0.96
No. of reflections	8494	7220
measured	6200	671.4
No. of unique	6389	6714
reflections	0.020	0.022
$R_{\rm int}$	0.020	0.022
$R^{[a]}[F, F > 4\sigma(F)]$	0.029	0.026
$wR^{[b]}$ (F^2 , all refl.)	0.058	0.047
No. of parameters	276	412
No. of restraints	244	280
S[c] °	0.90	0.84
Max. $\Delta \rho$ [eA ⁻³]	0.6	0.63

[a] $R(F) = \Sigma \|F_0\| - \|F_0\|/\Sigma \|F_0\| - \|^{[b]} wR(F^2) = [\Sigma \{w(F_0^2 - F_0^2)^2\}/\Sigma \{w(F_0^2)^2\}]^{[0.5]}; w^{-1} = \sigma^2(F_0^2) + (aP)^2 + bP, \text{ where } P = [F_0^2 + 2F_0^2]/3 \text{ and } a \text{ and } b \text{ are constants adjusted by the program.} - [c] S = [\Sigma \{w(F_0^2 - F_0^2)^2\}/(n - p)]^{[0.5]}, \text{ where } n \text{ is the number of data}$ and p the number of parameters.

graphic Data Centre, and can be obtained free of charge from CCDC, 12 Union Road, Cambridge CB2 1EZ, England [Fax: (internat.) + 44(0)1223/336033; E-mail: deposit@ccdc.cam.ac.uk] on quoting the reference number CCDC-101120.

- [1] P. Pyykkö, N. Runeberg, F. Mendizabal, Chem. Eur. J. 1997,
- 3, 1451.

 [2] W. Schneider, K. Angermaier, A. Sladek, H. Schmidbaur, Z. Naturfosch 1996, 51b, 790.
- [3] A. Bauer, H. Schmidbaur, J. Am. Chem. Soc. 1996, 118, 5324.
- [4] F.P. Gabbai, A. Schier, J. Riede, H. Schmidbaur, Chem. Ber. **1997**, 130, 111.
- [5] H. Schmidbaur, F.P. Gabbaı, A. Schier, J. Riede, Organometallics 1995, 14, 4969.
- K. Angermaier, H. Schmidbaur, Chem. Ber. 1995, 128, 817.
- S. Bommers, H. Beruda, N. Dufour, M. Paul, A. Schier, H. Schmidbaur, *Chem. Ber.* **1995**, *128*, 137.
- A. Bauer, W. Schneider, K. Angermaier, A. Schier, H. Schmidbaur, Inorg. Chim. Acta 1996, 251, 249.
- W. Wojnowski, B. Becker, J. Sassmannhausen, E. M. Peters, K. Peters, H. G. von Schnering, Z. Anorg. Allg. Chem. 1994, 620,
- [10] P. J. Bonasia, D. E. Gindelberger, J. Arnold, Inorg. Chem. 1993,
- 32, 5126.
 [11] W. Eikens, P. G. Jones, C. Thone, Z. Anorg. Allg. Chem. 1997, *623*, 735.
- [12] D. Fenske, F. Simon, Z. Anorg. Allg. Chem. 1996, 622, 45.
- R. Uson, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones, G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 1986, 291.
- [14] P. J. Stang, Y. Huang, A. M. Arif, Organometallics 1992, 11,
- [15] N.C. Baenziguer, W. E. Bennett, D. M. Soboroff, *Acta Crystallogr., Sect. B* **1976**, *32*, 962.
 [16] D. Toronto, B. Weissbart, D. Tinti, A. Balch, *Inorg. Chem.* **1996**,
- 35, 2484.
- [17] E. R. T. Tiekink, *Acta Crystallogr.* **1989**, *C45*, 1233. [18] P. Lange, A. Schier, H. Schmidbaur, *Inorg. Chim. Acta* **1995**, *235*, 263.
- [19] B. Weissbart, L. J. Larson, M. M. Olmstead, C.P. Nash, D.S.
- Tinti, *Inorg. Chem.* **1995**, *34*, 393.

 [20] M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna, R. Terroba, *Inorg. Chem.* **1994**, *33*, 3932.
- [21] J. J. Guy, P. G. Jones, G. M. Sheldrick, Acta Crystallogr., Sect. B 1976, 32, 1937.
- B 1976, 52, 1937.

 [22] S. M. Draper, C. E. Housecroft, J. E. Rees, M. S. Shongwe, B. S. Haggerty, A. L. Rheingold, *Organometallics* 1992, 11, 2356.

 [23] A. Bayler, G. A. Bowmaker, H. Schmidbaur, *Inorg. Chem.*1996, 35, 5959.
- [24] R. Uson, A. Laguna, M. Laguna, J. Jimenez, P. G. Jones, J. Chem. Soc., Dalton Trans. 1991, 1361.
- [25] M. N. Gowda, S. B. Naikar, G. K. N. Reddy, Adv. Inorg. Chem. Radiochem. 1984, 28, 255.
- [26] H. Schmidbaur, R. Franke, Chem. Ber. 1975, 108, 1321.
- [27] R. Uson, A. Laguna, M. Laguna, Inorg. Synth. 1989, 26, 85.
- [28] B. E. Cooper, W. J. Owen, J. Organomet. Chem. 1970, 21, 329. [98033]